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Abstract. Breathing solitons, i.e., dynamic dissipative solitons with oscillating pulse shape and energy caused
by different mechanisms of spatiotemporal instabilities, have received considerable interest from the aspects
of nonlinear science and potential applications. However, by far, the study of breathing solitons is still limited
within the time scale of hundreds of cavity round trips, which ignores the slow dynamics. To fill this lacuna,
we theoretically investigate a new type of vector dissipative soliton breathing regime and experimentally
demonstrate this concept using mode-locked fiber lasers, which arise from the desynchronization of
orthogonal states of polarization (SOPs) in the form of complex oscillations of the phase difference between
the states. The dynamic evolution of polarization states of the vector breathings solitons takes the form of
a trajectory connecting two quasi-equilibrium orthogonal SOPs on the surface of the Poincaré sphere. The
dwelling time near each state is on the scale of a tenth of a thousand cavity round trip times that equals
the breathing period, which is up to 2 orders of magnitude longer than that for common breathers. The obtained
results can reveal concepts in nonlinear science and may unlock approaches to the flexible manipulation of
laser waveforms toward various applications in spectroscopy and metrology.
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1 Introduction
During the last three decades, the study of flocking birds, supra-
molecular complexes, neurons in the cortex, modes synchroni-
zation in lasers, telecom, and sensing networks mainly focused
on revealing the interactions between individual system compo-
nents that produce large-scale collective patterns.1–4 However,
in the practical context, targeting the collective patterns under
demand is challenging due to the limited ability to conduct
experiments on manipulating engineering and biological net-
works’ structure.1–4 The short pulse duration of hundreds of

femtoseconds and repetition rates of tens of hundreds of mega-
hertz make mode-locked lasers (MLLs) suitable testbeds for
studying the synchronization-driven self-organization in the
form of dissipative solitons (DSs)—ubiquitous localized wave
packets arising from the balance between dissipative and disper-
sive effects.5–27 For example, recently demonstrated orthogonal
states of polarization (SOPs) of DSs show a resemblance of
coupled oscillators with various synchronization behaviors.15,28–30

The synchronization through short-range (covalent) and long-
range (non-covalent) interactions among DSs toward swarming
pulses into different soliton supramolecules hence offers an
unprecedented approach to manipulating the collective patterns
under controllable laboratory conditions and a short time scale
of seconds.22,23
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Short-range interaction through the overlapping of solitons
tails results in bound states (BSs) solitons which, in analogy
to biochemical and biological supramolecules, are formed by
strong covalent bonds, are frequently referred to as soliton
molecules, soliton macromolecules, or soliton crystals.5,20,21 The
strong, short-range interactions lead to the narrow spacing of
the few pulse widths and locked phase differences between
adjacent solitons, resulting in the highly challenging real-
time characterization of their detailed temporal structure.5,20,21

Long-range interactions can be driven by Casimir-like,19,25

optoacoustic17,18,20,24 polarization instabilities,13–16 and soliton-
dispersive wave interaction,6–12,31 leading to the formation of
the soliton structures in the form of multi-pulsing, harmonic
mode locking, soliton rain, rogue waves, and breathers.6–20,24,25,31

Breathing solitons, known as dynamic DSs, typically feature
profile and energy oscillation (breath) of DSs with periods from
5 to 100 round trips (RTs).6–10 Given the strong connection with
the Fermi–Pasta–Ulam recurrence,32,33 i.e., phenomena describ-
ing the periodic return of nonlinearly coupled oscillators to their
original states, breather solitons, in addition to rogue waves
emergence, turbulence, and modulation instability phenomena,
have attracted considerable attention in nonlinear optics.6–10,32,33

Also, the breathing solitons are attractive because of their
potential for metrology applications by enabling multiscale
dual-comb sources for increased measurement resolution.34

It was recently found that the breathing soliton emergence in
anomalous dispersion MLLs can be driven by modulation
instability10 and a simultaneous effect of the soliton bunching
and polarization instability.14 On the other hand, the breathers
in the normal dispersion regime can arise because of Hopf
bifurcation9 and subharmonic entrainment with an integer ratio
of the breathing period to the round-trip time.7

A recently developed dispersive Fourier transform technique
explores conventional soliton breathing regimes, revealing a
range of dynamic vector waveforms with the periods of oscil-
lations from tens to hundreds of round trips under the paradigm
of coupled Ginzburg–Landau equations.34–36 However, given
the limitations of the theoretical and experimental study in the
context of the dynamic range of tens of thousands of RTs, the
slow evolution of the breathing waveforms up to hundreds of
thousands of RTs is still absent.34–36

To fill this lacuna, for the first time, we believe that we have
demonstrated a new type of slow soliton breathing dynamics,
showing double temporal scale behavior, caused by a vector
mechanism allowing the transition from the zero-lag synchroni-
zation to phase difference entrainment and finally desynchroni-
zation of orthogonal SOPs. We modeled nonlinear polarization
rotation (NPR) mode-locked Er fiber laser in the paradigm of
coupled oscillators synchronization. Based on the vector model
of MLL dynamics, we reveal that the phase desynchronization is
connected to the emergence of the so-called spiral chaos in a
heteroclinic system,37,38 from which the trajectory is periodically
evolving nearby each of the orthogonal SOPs and is switching
between SOPs.15,28–30 Through Shil’nikov theorem analysis,
which defines the conditions of the spiral chaos emergence,39

we found that the range of the laser parameters for DS breathing
dynamics corresponded well to the experimental observation. In
stark contrast to slow breathing regimes,7,9,10,34–36 the observed
vector DS breathing dynamics has much more extended periods
up to 10,000 RTs and variable pulse shapes with a featured
dual-wavelength optical spectrum. The unveiled dependence of
the unprecedented long breathing period and shape on the laser

parameters can open an avenue to developing new vector ap-
proaches of laser dynamics toward various applications in spec-
troscopy, micromachining, and metrology.

2 Results

2.1 Experimental Results on Vector Breathing Regimes

The MLL we used to conduct the experiment operated under
a normal dispersion regime in the telecommunication C-band.
Such a type of laser allows the generation of high-energy pulses
on which most practical applications rely. The schematic con-
figuration of the laser is shown in Fig. 1(a) (details are in
Appendix A). Dispersion engineering is accomplished through
a piece of erbium-doped fiber (EDF) with highly positive group
velocity dispersion (GVD). The mode-locking mechanism is
NPR, where the intrinsic birefringence of optical fiber is used
to generate pulse intensity bias through the combination of a
fiber polarizer and two polarization controllers (PCs). The NPR
mechanism especially benefits routes to vector pulse shaping in
the context of the SOPs. The vector features of DS are analyzed
through a polarimeter and present dynamic SOP evolution on
the surface of the Poincaré sphere in terms of normalized
Stokes parameters, total power, degree of polarization (DOP),
phase difference, and power for the orthogonal x-∕y-polariza-
tion components.

Such orthogonal linear polarized fields of DS with correlated
phase relation can be treated as a general phase-coupled oscil-
lator, as shown in Fig. 1(b).34,37,40,41 The slow temporal behavior
of coupled oscillators strongly depends on syn-/desyn-chroniza-
tion of orthogonal fields through a phase change. Therefore,
the DS oscillation can be well explained by the general Adler
equation,42 describing the evolution of the phase difference Δφ
between two coupled oscillators.15,29,42 The Adler equation is
represented as

dΔφ
dt

¼ ΔΩ − K · sinðΔφÞ; (1)

where ΔΩ is the frequency difference, and K is the coupling
coefficient. In our DS laser, frequency difference depends on
the linear and circular birefringence, and the coupling coeffi-
cient is a function of the output powers of the orthogonal
SOPs, which depends on both the power and ellipticity of the
pump light.15,29 Given the polarization instability, the SOPs’ out-
put powers can evolve, which resembles a coupled oscillator
with a dynamic coupling regime.15,29 As follows from the
Adler equation, the synchronization (dΔϕ∕dt ¼ 0) exists when
jΔΩj < jKj, i.e., continuous-wave mode locking emerges, as
shown in Fig. 1(c). On the other hand, when jΔΩj > jKj holds,
chaotic phase difference slips appear that correspond to the
breathing dynamics [Δφ oscillates within a limited range in
Fig. 1(d)] and phase entrainment [phase difference oscillations
in Fig. 1(e)]. Furthermore, jΔΩj < jKj indicates a strong cou-
pling regime, while jΔΩj > jKj represents a decreased or weak
coupling regime. Those dynamic phase phenomena have been
theoretically confirmed previously in a self-pulsing laser.15,28,29

To obtain the slow vector breathing, we first operate the laser
under the standard stable DS regime. In contrast to the laser with
the scalar breathing dynamics, the reduction of pump power in
our laser leads only to the elimination of stable pulses.
Alternatively, we obtained a DS breathing by elevating the
pump power under a stable DS mode-locking scenario followed
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by fine adjustment of the intracavity PC. The slow vector breath-
ing can be accessed within a range of hundreds of milliwatts
of pump power. Figure 2 shows the experimentally observed
slow DS breathing dynamics for a normal dispersion laser.
Figure 2(a) shows the averaged optical spectra of the breather
with a dual-peak signature.8 Using a high-speed oscilloscope,
the temporal intensity distribution of a single DS breather is
clearly revealed in Fig. 2(b), illustrating a breather width of
200 RTs and a period of 10,000 RTs. Unlike the scalar DS char-
acterization, through polarimetric measurement, both orthogo-
nal polarization modes can be mapped into the temporal
domain, as shown in Fig. 2(c). The disparity in oscillation
intensity of orthogonal polarization modes manifests the vector
feature of the soliton breathing. Focusing on a 250 μs time
scale, the damped oscillation-like behavior consolidates the
breathing dynamics. The distinction of the pulses bunches’
shape [Figs. 2(b) and 2(c)] between single shot and polarimetric
measurement is attributed to the 1 μs time resolution of the

polarimeter. In particular, polarimetric measurement gave us
a unique opportunity to extract information about the phase dif-
ference between orthogonal SOPs and DOP of the slow breath-
ing dynamics. Based on Adler’s equation, the phase information
allows us to view the synchronization of orthogonal fields. In
Fig. 2(d), one can clearly see that periodic phase difference slip
in π is related to the breathers’ power spike emergence and dis-
appearance. The fast phase difference slip hence results in a fast
change DOP from 60% to 90%, indicating strong polarization
instability. Therefore, such slow breathing behavior originates
from the longitudinal and orthogonal polarization modes syn-
chronization (constant phase difference) and desynchronization
(phase difference slip). The polarimetric measurement also
provides a route to identify desynchronization by visualizing
the SOP evolution of the DS breathing. We then evidenced the
desynchronization of polarization modes on the surface of the
polarization Poincaré sphere [Fig. 2(e)], from which the SOP
takes the form of hops from a localized point.

Fig. 1 Vector breathing DS generation in a mode-locked fiber laser. (a) Schematic setup of
the NPR mode-locked normal dispersion fiber laser. EDF, erbium-doped fiber; LD, laser diode;
PC1 and PC2, polarization controllers; PI-ISO, polarization-insensitive isolator; Polarizer,
45 deg-tilted fiber grating based polarizer; WDM, wavelength division multiplexer; OC, 91:9% out-
put coupler. The opaque yellow area represents the NPR mechanism. (b) A general schematic of
orthogonal polarization modes resembled coupled oscillator systems. The two pendula are
connected with a common beam indicating the coupling mechanism. Each pendulum has an initial
phase angle φ1;2, initial frequency f 1;2, and intensity Ix ;y . (c)–(e) The temporal behavior of coupled
oscillator model for emitting vector breathing/stable DS. (c) The constant phase difference
between orthogonal polarization fields, showing dΔϕ∕dt ¼ 0. In this case, the output DS is
synchronized and only stable DS will be generated. (d) Phase difference slip between orthogonal
polarization modes, showing dΔϕ∕dt ≠ 0 with jΔΩj > jK j. In this case, the phase difference
quickly jumps within two fixed points in the vertical axis (blue points). (e) Phase difference entrain-
ment between orthogonal polarization fields, showing dΔϕ∕dt ≠ 0 with jΔΩj > jK j. In this case,
Δϕ oscillates within the region defined by two fixed phase points (blue points in the vertical axis),
and the synchronization tends to occur but is never reached.
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The vector DS breathing waveform can survive hours under
lab conditions. Further, increasing pump power would result
in completely unstable mode locking. Nevertheless, the NPR
mechanism offers control of the polarization dimension, thus
providing access to various stable DS regimes such as DS
molecules and noise-like pulses in our laser under fixed pump
power (see Appendix B, Sec. 5.1). In a laser, the undamped
relaxation oscillation mechanism of Q-switching intrinsically
generates breathers at a longer time scale. By adjusting the
PCs in our laser, we could obtain another breathing state that is

typically named Q-switched mode locking (QML). To examine
the vector feature of breathing, we again carried out optical
spectral measurement, temporal trace record, and polarimetric
measurement, as shown in Fig. 3. Figure 3(a) shows the typical
optical spectrum of a breather with the signature dual-peak fea-
ture. The rectangular pedestal in the optical spectrum indicates
spectral filtering induced strong dissipative effects within the
normal dispersion MLL cavity. In Fig. 3(b), the double-scaled
temporal pulses show Q-switching behavior with a kilohertz
repetition rate, i.e., 200 kHz (∼200 RTs). Uniquely, there

Fig. 2 Experimental observation of slow vector DS breathing dynamics. (a) Optical spectrum with
dual-peak feature at 1570 nm; (b) single shot temporal trace of vector DS breather. The period of
breather is 10,000 RTs. Inset: zoomed in temporal structure of vector DS breather with a width of
∼200 RTs; (c) slow polarimetric trace of powers of the orthogonally polarized components Ix (blue)
Iy (orange) at a scale of 1 ms. The lower figure is the total power I ¼ Ix þ Iy (black). Inset: zoomed-
in temporal trace of shaded area in (c) within 250 μs (10,000 RTs), and the pulse period is ∼200
RTs. (d) Slow polarimetric measurement retrieved breather phase difference Δϕ (blue) and DOP
(red) within 1 ms. When breathing appears, DOP oscillates between 60% and 90%, and Δϕ os-
cillates within π. Inset: zoomed-in phase difference transition and DOP of shaded area in (d) within
250 μs. (e) SOP evolution trajectories of vector DS breathing on the surface of Poincaré sphere
within 1 ms. All stokes parameters are normalized. Note: The laser pump power is Ip ¼ 500 mW.
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appears another envelope of the Q-switching mode-locked
pulses in addition to the general Q-switched pulse bunch. This
slow envelope hence corresponds to the breathing QML pulses.
The breathing period is 66 μs (3000 RTs). Through polarimetric
measurement, the intensity discrepancy between orthogonal
polarization modes can be well identified, indicating the vector
feature of QML pulses [Fig. 3(c)]. A zoomed-in pulse oscilla-
tion is shown with a period of 200 RTs corresponding well to the
fast detected results of this new type of slow vector breather.
Moreover, by investigating the DOP of QML, we found that
the DOP maintained ∼100% at a large time window of 5000

RTs, as shown in Fig. 3(d). Such high DOP implies that the dy-
namic SOP is indeed slow and can be finely resolved through
our polarimetric measurement. Moreover, the phase change in
Fig. 3(d) appears as a straight line with finite thickness. This
depicts an observable change without sudden slip in the phase
domain [inset in Fig. 3(d)]. The dynamic temporal oscillation
is therefore caused by the phase difference entrainment of
orthogonal fields. The resulting Poincaré sphere representation
of SOP trajectory [Fig. 3(e)] hence forms a limited cycle, indi-
cating phase difference entrainment synchronization of the
vector breathers.15,28

Fig. 3 Experimentally observed vectorial breathing dynamics of QML in a normal dispersion fiber
laser. (a) Optical spectrum with a dual-peak feature for vector breathers. (b) Single-shot temporal
trace of Q-switched mode-locked DS for 10,000 RTs. The period of the breather is 3000 RTs.
Inset: zoomed-in temporal structure of the breather within 250 μs in shaded areas of (b).
(c) Polarimeter measured averaged powers of the orthogonally polarized components Ix (blue)
and Iy (orange). The lower figure is the total output power and total S0 ¼ Ix þ Iy (black). The period
of the breathing waveform is ∼4000 RTs. Inset: zoomed-in temporal trace within 250 μs in the
shaded area of (c). (d) Retrieved phase difference Δφ (blue) and DOP (red) through polarimetric
measurement along 1 ms (44,000 RTs). Inset: zoomed-in phase difference evolution and DOP
within 250 μs in the shaded area of (d). (e) SOP trajectories ofQ-switched mode-locked breathers
on polarization Poincaré sphere. All Stokes parameters are normalized. Note: The laser pump
power is Ip ¼ 360 mW.
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2.2 Vector Model of Er-Doped Mode-Locked Fiber
Laser

For modeling slow breathing dynamics, we developed a vector
model for a mode-locked EDF laser (details are in Appendix A,
Sec. 4.2). This model overcomes limitations of the previous sca-
lar or even vector models such as coupled nonlinear Schrödinger
or Ginzburg–Landau equations, where long-range pulse dynam-
ics are missing. Our model mainly visits the orientation distri-
bution of the dipole moments with absorption and emission, the
temporal response of the active medium’s population inversion,
linear, and circular birefringence of a laser cavity and pump light
contribution. We adopt the slow evolution of the lasing field in
terms of the Stokes vector S ¼ ðS0; S1; S2; S3ÞT, and orientation
distribution of the active medium’s population inversion in
terms of Fourier coefficients for angular distribution of the pop-
ulation inversion fi ¼ ðf1; f2; f3Þ, initial equations were aver-
aged over the pulse width. For emulating the contribution of
NPR, we take the linear βL and circular βC birefringence into
consideration, where βLC ¼ 2πL∕LbLðbCÞ; LbLðbCÞ is the linear
(circular) birefringence beat length and L is the cavity length.
We also involve the pump light anisotropy ξ in addition to the
normalized pump power Ip, hence reflecting a completely vec-
torial treatment of laser pulse [Eq. (4) in Appendix A, Sec. 4.2].
To investigate the phase synchronization scenarios in vector DS,
we simply derive the equation for the phase difference between
orthogonal polarization states using our vector model [Eq. (6) in
Appendix A, Sec. 4.2]. The slow-varying phase difference re-
lationship is similar to the Adler equation. Moreover, the pres-
ence of dynamically evolving Stokes parameters and orientation
distribution of the population inversion in active medium man-
ifests a new system in the MLL that is a coupled oscillator with
dynamically evolving frequency difference and coupling.

We then map the breather’s emergence in the phase space
with the variables mentioned above. To identify the range

parameters, i.e., the normalized pump power Ip, pump
anisotropy ξ, and the linear birefringence βL, we linearized
Eq. (4) in Appendix A, Sec. 4.2 in the vicinity of the steady-
state solution (S0 ≠ 0, S1 ¼ S2 ¼ 0, S3 ¼ �S0) and found
numerical eigenvalues for the parameters. Using the
Shil’nikov theorem, eigenvalues λ and the second saddle param-
eter σ2 take the form41

λ0 ¼ 0; λ1,2 ¼ −γ1 � iω1; λ3,4 ¼ −γ2 � iω2;

λ5,6 ¼ ρ� iω3; σ2 ¼ 2 · ðρ − γ1Þ:
ðω1,2;3 ≠ 0; ρ; γ1; γ2 > 0; γ1 > γ2Þ: (2)

Given that eigenvalues for steady states (S0 ≠ 0, S1 ¼ S2 ¼ 0,
S3 ¼ S0) and (S0 ≠ 0, S1 ¼ S2 ¼ 0, S3 ¼ −S0) are equal,
σ2 > 0 hint condition for the orthogonal SOPs desynchroni-
zation.28,30,32,33 The oscillatory behavior emerges when ρ > 0,
indicating laser pulsation. Figure 4 shows the self-pulsing map
under various laser operation conditions. Figures 4(a)–4(c)
show the laser pulsing parameter regions for the anisotropic
pump, birefringent cavity, and fixed pump power individually.
The area covered by the colored contour surface locates the
region of vector breathers’ existence. At a fixed pump power,
Fig. 4(d) identifies the conditions for Shil’nikov chaos.41

According to the Shil’nikov theorem, condition σ2 > 0 enables
mapping the range of parameters where hyperchaotic behavior
emerges.41 The hyperchaotic trajectory is characterized by
extreme sensitivity to the perturbations of the initial conditions
or the system parameters. From Fig. 4, it is easy to observe that
in the phase space, the oscillation exists in a quite wide range of
pump power. However, the allowed range of pump anisotropy
and intracavity birefringence strength for oscillation emergence
is very limited, i.e., 0 < ξ < 0.5, 0 < βL < 0.006. This explains
why the slow breathing oscillations are difficult to observe

Fig. 4 Self-pulsing maps of laser operation conditions for ρ > 0, ω ≠ 0. (a) The pump wave is
isotropic where ξ ¼ 0. (b) The laser cavity is isotropic where βL ¼ 0. (c) The pump power is fixed.
(d) Shil’nikov chaos conditions for the second saddle parameter σ2 at Ip ¼ 55.
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experimentally. Given that the dynamics in the model is
averaged over the pulse width, the breathing dynamics of DS
correspond to the phase difference desynchronization, the slow
complex oscillations (Q-switched mode locking), and finally
the steady-state operation (continuous-wave mode locking; see
Appendix B, Fig. 7).

The simulated tunability of the breathing dynamics along
with alternating the ellipticity of the pump wave is shown in
Fig. 5. As shown in Fig. 5, the weak linear birefringence and
low anisotropy of the pump wave within the range of parameters
correspond to a case of σ2 > 0 from which the laser operates
under the breathing regime. The breather polarization dynamics
reproduced in Figs. 5(a)–5(c) is quite close to the experimental
observation shown in Figs. 2(c) and 2(d) in the context of shape,
breathing period (∼10; 000 RTs) and the phase difference slips
in π radian. The main deviation from the experimental observa-
tion is the Poincaré sphere SOP trajectories that can be caused
by the simplified matter of the model that does not take into
account the dual-wavelength lasing shown in Fig. 2(a) and slow
polarimeter operation with a sampling of 50 RTs. Nevertheless,
the SOP trajectories still follow a heteroclinic path.

As follows from Eq. (4) in Appendix A, Sec. 4.2, the in-
creased pump anisotropy from ξ ¼ 0.11 to ξ ¼ 0.22 leads to
a more anisotropic distribution of the population inversion
(f3 function) and so to enhanced coupling of the polarization
components Ix and Iy. So, the chaotic behavior is trans-

formed into periodic oscillations of the total’s [Fig. 6(a)] and
polarization components’ powers [Fig. 6(b)], along with the
periodic oscillations of the phase difference [Fig. 6(c)]. The si-
mulated polarization dynamics is also quite similar to the exper-
imental results shown in Figs. 3(c) and 3(d). The heteroclinic
SOP trajectories further confirm the validity of our model. The
main difference is that the trajectories on the Poincaré sphere
can be caused by the dual-wavelength lasing shown in Fig. 3(a)
and the low polarimeter sampling rate.

3 Discussion and Conclusion
We have experimentally demonstrated the observation of slow
vector DS breathing waveforms in a normal dispersion mode-
locked fiber laser. Such a dynamic pulse regime is obtained in
the laser cavity well above the lasing threshold. We have shown
numerically that such a type of breathing dynamics exists
not only through the balance of gain, loss, dispersion, and non-
linearity, but also more to an equilibrium based on pump wave
ellipticity, cavity anisotropy, and intracavity birefringence.
The developed vector model reproduced our experimental
observation well. We have identified the region for vector
DS breathing emergence. The pump power and cavity birefrin-
gence can be controlled to alter the coupling strength between
orthogonal SOPs. Uniquely, we have linked the appearance of
vector DS breathing regime with the general synchronization

Fig. 5 Simulation of desynchronized vector breathing dynamics. (a) Breathing polarization
dynamic in the form of complex oscillations of the total output power I ¼ Ix þ Iy . The breathing
period is 104 RTs. (b) The simulated powers of the individual polarization components Ix (blue)
and Iy (orange). (c) The calculated phase difference Δφ between orthogonal polarization
modes. The phase slip in π accords to the intensity breathing in (a). (d) SOP trajectories shown
on the Poincaré sphere in normalized Stokes parameters. Note: Main parameters used in the
model are βL ¼ 2π · 0.001, βc ¼ 0, Ip ¼ 55, σ ¼ 0.9 (ξ ¼ 0.11). The other parameters Δ ¼ 0.025,
ε ¼ 0.22 · 10−5, α1 ¼ 12.9, α2 ¼ 2.3, χs ¼ 2.3, χp ¼ 1, and γ ¼ 2 · 10−6.
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concept in the phase domain through orthogonal polarization
mode coupling. Weak coupling leads to the polarized modes’
desynchronization, with periodic switching SOPs trajectories
evolving around a fixed point, which corresponds well to the
heteroclinic dynamics.41 Compared with the existing soliton
breathers, the vector breathing period (dwelling time near each
SOP) in the scale of thousands of cavity RT times is approxi-
mately 2 orders of magnitude longer than that for scalar breath-
ers. This is in stark contrast to the previous vector DS breathing
waveforms (breathers and QS-mode locked) observed experi-
mentally and theoretically.34–36

Our results demonstrate that the slow vector DS breathing
universally exists in a normal dispersion mode-locked fiber
laser. Our investigation can contribute to the thoroughgoing
understanding of DS and laser physics. With the vector model,
observations further illustrate that the mode-locked fiber laser
serves as an effective test bed for the study of complex nonlinear
dynamics relevant to a large variety of physical systems in
a higher dimension. Likely, similar slow vector DS breathing
waveforms may also exist in other types of MLLs. Further de-
tailed breathing dynamics may be characterized through polari-
zation-resolved dispersive Fourier transform in the future. Our
findings could help in designing an ultrastable high-power
mode-locked fiber laser, from which frequency comb, machin-
ing, and metrology would find important applications. It is also
anticipated that the observed breathing dynamics is not only
limited to nonlinear optics but also benefits in discovering new

dynamics in general nonlinear physics, plasmonics, biology, and
materials science.

4 Appendix A

4.1 Experimental Design

The configuration of the NPR mode-locked fiber laser is shown
in Fig. 1. A 1.48 m EDF with a normal GVD of þ66.1 ps2∕km
is used in this cavity. In addition, the cavity also contains
0.9 m of OFS980 fiber with a normal GVD of þ4.5 ps2∕km
and 2.34 m of a single-mode fiber with an anomalous GVD
of −21.67 ps2∕km. The total length of the cavity is 4.72 m,
corresponding to the fundamental frequency of 44.18 MHz and
the net dispersion of the cavity is þ0.046 ps2, and so the laser
operates in the normal dispersion. The pump light is coupled to
the laser cavity through a 980∕1550 nm wavelength division
multiplexer (WDM). A 91:9 coupler is used to direct out 9%
of the pulse energy outside the cavity. The polarization-insen-
sitive isolator (PI-ISO) in the cavity makes the unidirectional
pulse train propagation. A fiber polarizer and two PCs are used
to support the NPR mechanism for passive mode locking. By
using the fast photodetector and oscilloscope, we record the
dynamics of waveforms. By utilizing a commercial polarimeter
(THORLABS, IPM5300) with 1 μs resolution, we observed the
evolution of the polarization attractors at the Poincaré sphere in
terms of the normalized Stoke parameters S1, S2, and S3, the

Fig. 6 Simulation of phase difference entrainment vector breathing dynamics. (a) Simulated tem-
poral trance in the form of complex oscillations (QML) of the output power total power I ¼ Ix þ Iy .
The breathing period is 3000 RTs. (b) Simulated temporal trace of the powers of polarization com-
ponents Ix and Iy . The breathing period is 3000 RTs. (c) Simulated phase difference Δϕ evolution
along 10,000 RTs. (d) SOP trajectories in the Poincaré sphere. The main parameters used in the
model are σ ¼ 0.8 (ξ ¼ 0.22), βL ¼ 0, βC ¼ 2π · 0.001, Ip ¼ 55. The other parameters: Δ ¼ 0.025,
ε ¼ 0.22 · 10−5, α1 ¼ 12.9, α2 ¼ 2.3, χs ¼ 2.3, χp ¼ 1, γ ¼ 2 · 10−6.
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power for the orthogonal x and y polarization components
ðIx; IyÞ, the total power S0, the phase difference Δφ, and the
DOP. The definition of raw/normalized Stokes parameters
and DOP is given below,

S0 ¼ Ix þ Iy;

S1 ¼ Ix − Iy;

S2 ¼ 2
ffiffiffiffiffiffiffiffi
IxIy

p
cos Δφ;

S3 ¼ 2
ffiffiffiffiffiffiffiffi
IxIy

p
sin Δφ;

si ¼ Si∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

q
;

DOP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S21 þ S22 þ S23

q
∕S0; ði ¼ 1, 2; 3Þ: (3)

4.2 Vector Model of Erbium-Doped Fiber Laser

dS0
dt

¼
�
2α1f1
1þΔ2

− 2α2

�
S0 þ

2α1f2
1þΔ2

S1 þ
2α1f3
1þΔ2

S2;

dS1
dt

¼ γS2S3 þ
2α1f2
1þΔ2

S0 þ
�
2α1f1
1þΔ2

− 2α2

�
S1

− βcS2 − 2α1f3Δ
1þΔ2

S3;

dS2
dt

¼ −γS1S3 þ 2α1f3
1þΔ2

S0 þ βcS1 þ
�
2α1f1
1þΔ2

− 2α2

�
S2

þ
�
2α1f2Δ
1þΔ2

− 2βL

�
S3;

dS3
dt

¼ 2α1Δf3
1þΔ2

S1 −
�
2α1Δf2
1þΔ2

− 2βL

�
S2 þ

�
2α1f1
1þΔ2

− 2α2

�
S3;

df1
dt

¼ ε

�ðχs − 1ÞIp
2

− 1−
�
1þ Ipχp

2
þ d1S0

�
f1

−
�
d1S1 þ

Ipχp
2

ð1− δ2Þ
ð1þ δ2Þ

�
f2 − d1S2f3

�
;

df2
dt

¼ ε

�ð1− δ2Þ
ð1þ δ2Þ

Ipðχs − 1Þ
4

−
�
Ipχp
2

þ 1þ d1S0

�
f2

−
�ð1− δ2Þ
ð1þ δ2Þ

Ipχp
2

þ d1S1

�
f1
2

�

df3
dt

¼ −ε
�
d1S2f1

2
þ
�
Ipχp
2

þ 1þ d1S0

�
f3

�
: (4)

Here, time and length are normalized to the RT and cavity
length, respectively. Coefficient α1 ¼ σaΓLcEr is the EDF
absorption at the lasing wavelength, α2 represents the normal-
ized losses, Si (i ¼ 0; 1; 2; 3) are the Stokes parameters; S0 and
Ip are the output lasing and the pump power normalized to
the corresponding saturation powers Iss and Ips, respectively.
Here, Ips ¼ γdAhνp∕ðσðpÞa ΓpÞ, Iss ¼ γdAhνs∕ðσðLÞa ΓLÞ (h is the
Planck’s constant, νp, νs are pump and lasing frequencies),
χ ¼ ðσðLÞa þ σðLÞe Þ∕σðLÞa , σðLÞaðeÞ, σ

ðpÞ
a are absorption and emission

cross sections at the lasing wavelength and absorption cross
section at the pump wavelength, ΓL and Γp are the confinement
factors of the EDF fiber at the lasing and pump wavelengths,
cEr is the concentration of erbium ions, and A is the fiber core
cross-section area. Coefficient γ is normalized to the cavity

length and the saturation power; the Kerr constant, ε ¼ τR∕τEr,
is the ratio of the RT time τR to the lifetime of erbium ions at the
first excited level τEr; Δ is the detuning of the lasing wavelength
with respect to the maximum of the gain spectrum (normalized to
the gain spectral width); d1 ¼ χs∕ð1þ Δ2Þ. To mimic the con-
tribution of the two PCs and polarizer shown in Fig. 1, we ac-
count for the linear βL, and the circular βC birefringence βLðCÞ ¼
2πL∕LbLðbCÞ is the linear (circular) birefringence beat length and
L is the cavity length and the pump anisotropy ξ ¼ ð1 − δ2Þ∕
ð1þ δ2Þ, where δ is the ellipticity of the pump wave.28–30

Equation (4) has been derived under the approximation that
the dipole moments of the absorption and emission transitions
for erbium-doped silica are located in the plane that is orthogo-
nal to the direction of the light propagation. This results in
the angular distribution of the excited ions nðθÞ, which can be
expanded into a Fourier series as follows:28–30

nðθÞ ¼ n0
2
þ
X∞
k¼1

n1k cosðkθÞ þ
X∞
k¼1

n2k sinðkθÞ;

f1 ¼
�
χ
n0
2
− 1

�
þ χ

n12
2

; f2 ¼
�
χ
n0
2
− 1

�
− χ

n12
2

;

f3 ¼ χ
n22
2

: (5)

To explore the concept of the phase-coupled oscillators, by
using Eqs. (4) and (5), we derive the equation for the phase dif-
ference between two orthogonal SOPs as follows:

dΔφ
dt

¼ −2βL þ 2α1f2Δ
1þ Δ2

− γ

12
S1½1 − 2 · cosð2ΔφÞ�

þ f3
2

�
− S1
S3

Δ
1þ Δ2

þ S0
S2

�
sinð2ΔφÞ: (6)

The simulation for stable DS and another example of
breather is shown in Appendix A, Sec. 4.2.

As follows from Eqs. (6) and (1), increased birefringence
strength βL and nonlinearity coefficient γ lead to increased
frequency of oscillations. The dependence of the coupling
coefficient in Eq. (6) on the dynamically evolving Stokes
parameters results in alteration of the synchronization and
desynchronization shown in Fig. 5(c) and so in breathing dy-
namics in Figs. 5(a) and 5(b). Also, the linear stability analysis
[Eq. (2) and Fig. 4] demonstrates that the breathing dynamics
exists for very narrow range of values of the birefringence
strength and the pump anisotropy ξ. For an example, increasing
the pump anisotropy leads to modification of breathing dynam-
ics toward oscillations shown in Fig. 6.

5 Appendix B

5.1 Additional Experimental Results

In the experiment, we can achieve different mode-locking states
by increasing the pump power or adjusting the PCs individually
at the same pump power. Figure 7 shows continuous wave (CW)
mode-locking state of DSs at a pump power of 260 mW. When
the pump power is increased from 260 to 450 mW, the DS pulse
splits into an unstable multi-pulse state in Fig. 8. After that,
under this pump power, only adjusting the PCs can obtain un-
stable NLP in Fig. 9, stable NLP in Fig. 10, and stable DS in
Fig. 11. Figures 12 and 13 show two different types of breathing
waveforms from those in the article.
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Fig. 7 CWmode-locking state of DSs with a locked state of polarization (SOP) at a pump power of
260 mW. The CW mode-locking case at a pump power of 260 mW of DS is shown in (a)–(e). The
wide optical spectrum typical for the normal dispersion operation is shown in (a). (b) A stable
mode-locking pulse train with a repetition rate of 44.18 MHz accords well with the length of
the cavity, and the pulse train has a stable amplitude with the small variation of the peak power
at the fast and slow time scales. (c) The autocorrelation trajectory. (d) The output power of two
orthogonal polarization components giving stable evolving power. (e) The fixed phase difference
and SOP locking with high DOP above 90%, indicating the soliton is polarization locked vector
dissipative soliton (PLVDS) caused by strong coupling between two orthogonal polarization com-
ponents. (f) The averaged SOP on the Poincaré sphere within 1 ms in the form of a fixed point.
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Fig. 8 Unstable multi-pulse states of DSs when the pump power is increased from 260 to 450mW.
When the pump power is increased from 260 to 450 mW, the stable fundamental frequency
DSs become unstable multi-pulse states of DSs shown in (a). The pulse train has an unstable
amplitude with a repetition rate of 88.36 MHz and pulse duration of ~10 ps, as shown in
(b) and (c). (d), (e) The polarization state of the pulse, indicating the soliton is PLVDS so we
cab increase the pump power to obtain an unstable mode-locking state. (f) The averaged
SOP on the Poincare sphere within 1 ms in the form of a fixed point.
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Fig. 9 Unstable mode-locking state of NLP at the same pump power as in Fig. 8. At the same
pump power as Fig. 8, we can obtain NLP with polarization instability mode-locking state only by
adjusting the PCs. (a) A typical spectrum of NLP. (b) The pulse with a repetition rate of 44.18 MHz
accords well with the length of the cavity. (c) The autocorrelation trajectory, which is very consis-
tent with the typical characteristics of NLP with a large energy base and a very narrow peak. As
shown in (d) and (f), the output power of the cavity varies within a certain range, and the averaged
SOP on the Poincaré sphere is not a fixed point, which indicates that the laser is not operating in a
stable state, mainly due to the weak coupling of the strengths Ix and Iy . (e) The fixed phase differ-
ence and SOP locking with high DOP above 90%.
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Fig. 10 (a) A typical spectrum of NLP. (b)A stable mode-locking pulse train with a repetition rate of
44.18 MHz accords well to the length of cavity and the pulse train has a stable amplitude. (c) The
autocorrelation trajectory which is very consistent with the typical characteristics of NLP with a
large energy base and a very narrow peak. As shown in (d) and (e), the output powers of two
orthogonal polarization components keep unchanged with fixed phase difference and high
DOP above 90% indicating that the soliton is polarization locked vector soliton (PLVS). (f) The
averaged SOP on the Poincaré sphere within 1 ms in the form of a fixed point.
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Fig. 11 Stable mode-locking state of DS molecules at the same pump power as in Fig. 9. At the
same pump power as in Fig. 9, the CW mode-locking state of NLP can be turned into a stable
mode-locking state of DS molecules with a locked SOP only by adjusting the PCs. (a) Significant
regular periodic modulation, and the overall shape of the modulation spectrum has the typical
characteristics of a single-pulse DS spectrum. As shown in (b), the bound state solitons as a whole
propagate in the laser cavity with a repetition rate of 44.18 MHz. (c) An autocorrelation trajectory
with three peaks. (d) The output power of two orthogonal polarization components varying within a
certain range. (e) and (f) The fixed phase difference, a fixed point on the Poincaré sphere, and high
DOP above 90%, which indicates that the soliton is PLVDS.
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Fig. 12 Experimental observation of desynchronized vector breather dynamics. In addition to
the breathers in the article, it can also be obtained desynchronized vector breather at the pump
power of 500 mW. The optical spectrum, pulse trains, and autocorrelation trajectory are shown
in (a)–(c), respectively. As shown in (a), the optical spectrum has two maxima that reflects the
breathing spectral dynamics. (d) A breather width of 200 μs. (e) The breather’s power spikes
emergence and disappearance is related to the periodic phase difference slip in π and DOP
hops. As shown in (f), the trajectories in the Poincaré sphere also take the form of hops from
the localized SOPs.
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Fig. 13 Experimental observation of phase difference entrainment vector breather dynamics. In
addition to the breathers in the article, a phase difference entrainment vector breather at the pump
power of 460 mW can also be obtained. The optical spectrum, pulse trains, and autocorrelation
trajectory are shown in (a)–(c), respectively. Similar to the previous case shown in Fig. 13, the
optical spectrum in (a) also exhibits two maxima. However, the breathing dynamics takes the form
of two-scale oscillations (QML) with the periods of 125 μs in (e). As follows from (d), the dynamics
is caused by the phase difference entrainment (oscillations). The DOP above 90% indicates that
the dynamic is slow at the time scale from 1 μs to 1 ms. As shown in (f), the trajectory in the
Poincaré sphere is a cycle, and so the vector soliton breathing dynamics takes the form of a phase
difference entrainment synchronization scenario.
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5.2 Additional Theoretical Results

In addition to the simulation of vector breathing dynamics men-
tioned above, the breathing dynamics can also emerge for differ-

ent circular birefringence and anisotropy of the pump wave as
shown in Fig. 14. Figure 15 shows the simulation of polariza-
tion-locked regime which corresponds to the experimentally ob-
served case shown in Figs. 7 and 10.
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Fig. 15 Steady state (polarization-locked regime) in the form of the constant output powers. When
the pump power is reduced from Ip ¼ 55 to Ip ¼ 29 and high pump anisotropy ξ ¼ 0.2, it leads to
the increase coupling between x and y components and so to the steady-state operation
(CW or polarization-locked regime) shown in (a) and (b). The other parameters: Δ ¼ 0.025,
ε ¼ 0.22 · 10−5, α1 ¼ 12.9, α2 ¼ 2.3, χs ¼ 2.3, χp ¼ 1, and γ ¼ 2 · 10−6.
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Fig. 14 Breathing polarization dynamics in the form of complex oscillations of the output power
total power I ¼ Ix þ Iy . Though breathing regimes are not mapped in terms of the circular
birefringence, the dynamics can also emerge for the weak circular birefringence and low
anisotropy of the pump wave, as shown in (a)–(d). The main parameters: σ ¼ 0.95 (ξ ¼ 0.05),
βL ¼ 0, βc ¼ 2π · 0.001, Ip ¼ 55. The other parameters: Δ ¼ 0.025, ε ¼ 0.22 · 10−5, α1 ¼ 12.9,
α2 ¼ 2.3, χs ¼ 2.3, χp ¼ 1, γ ¼ 2 · 10−6. (a) and (b) The powers of the polarization components
and the total power. As shown in (c), the phase difference slips in π radian. (d) SOP trajectories
in the Poincaré sphere.
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